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Abstract
We study a statistical mechanics model of a solid. Neighboring atoms are connected by
Hookean springs. If the energy is larger than a threshold the spring is more likely to fail, while
if the energy is lower than the threshold the spring is more likely to survive. The phase diagram
and thermodynamic quantities, such as free energy, numbers of bonds and clusters, and their
fluctuations, are determined using renormalization group and Monte Carlo techniques.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The mechanical properties of solids, such as the mechanical
failure, are topics of considerable interest [1–5]. In this paper
we analyze an equilibrium statistical mechanics model [6] of
a solid. In previous calculations [7] we went beyond the
ideal Hooke law for springs by using the realistic anharmonic
energy versus atomic distance developed and tested extensively
by Ferrante and collaborators [8]. We found that the phase
diagram exhibits universal features when the temperature and
the stress are appropriately scaled. Those calculations were
mean field in character as we assumed that all springs have
the same strain. In this paper we evaluate the role of thermal
fluctuations by using renormalization group and Monte Carlo
simulations. The model is defined in section 2. We view the
solid as a collection of harmonic springs. If the energy of such
a spring is larger than a threshold, the spring is likely to fail [9].
Assuming that the relaxation times are short compared to the
measurement time, we use equilibrium statistical mechanics
to compute the various thermodynamic quantities. When
the elastic energy is not too large, the partition function
for the harmonic ‘springs’ defined on percolation clusters
can be mapped into a Potts model [10, 11]. This model
is quite similar to the annealed Ising model on percolation
cluster [12, 13]. In section 3 we present numerical results based
on the renormalization group Migdal–Kadanoff scheme which,
as first shown by Berker [14], provides exact solutions of
statistical models on hierarchical lattices [15–17] and on small
world nets [18, 19]. Monte Carlo simulations are presented in
section 4. Our concluding remarks are found in section 5.

3 Author to whom any correspondence should be addressed.

2. Model

The energy of a ‘spring’ (i, j) is given by the Hooke law:

Hi j = −EC + k

2
(ri − r j )

2 (1)

where ri is the displacement vector from the equilibrium
position of atom i , measured in units of the lattice constant
a, EC is the cohesive energy, and k is elastic constant. If the
energy of the spring is larger than the threshold energy E0

the ‘spring’ is more likely to fail than to survive. p is the
probability that the ‘spring’ survives and 1 − p the probability
that the ‘spring’ breaks. We assume its dependence on energy
to be given by the Boltzmann weight

p

1 − p
= e−H−E0

kB T = we− K
2 (ri −r j )

2
(2)

where: K = k/kBT and w = e
EC+E0

kB T . We allow for
correlations between failing events by using the Potts [10]
number of states q , which plays the role of a fugacity
controlling the number of clusters [20, 21]: if q � 1 there is a
tendency of forming many small clusters while if q � 1 there
is a tendency to form a few large clusters. If q = 1 springs
fail independently of one another, i.e. random percolation
problem [22]. The partition function is obtained by summing
over all possible configurations of bonds arranged on the lattice

Z =
∑

config

qcwB Z config
elastic (3)

C is the number of clusters, including single site clusters, and
B is number of ‘live’ (i.e. surviving) ‘springs’. The restricted
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partition function associated with the elastic energy for a given
configuration of bonds (live ‘springs’) is

Z config
elastic = Trr e− Helastic

kB T (4)

− Helastic

kBT
=

∑

〈i, j〉

K

2
(ri − r j )

2. (5)

In equation (5) the sum is over all live ‘springs’. By using
the Kasteleyn–Fortuin expansion [22] for Potts model we can
rewrite the partition function as

Z = Trσ Trr e− H
kB T . (6)

The Hamiltonian is

− H
kBT

=
∑

〈i, j〉

[
J1δ(σi , σ j ) − J2

2
δ(σi , σ j )(ri − r j)

2

]
(7)

where σi is a Potts spin taking q values. This mapping is a
Gaussian approximation valid when, on the right-hand side of
equation (7), the elastic energy is small compared to the first
energy contribution. The coupling constants J1 and J2 are
related to the original parameters, w and K , as follows:

J1 = ln(1 + w) (8)

J2 = K
w

w + 1
. (9)

The free energy per bond is: f = ln Z/Nbonds. The
derivatives of the free energy f with respect to the parameters
w, K , and q provide respectively the number of live ‘springs’
b, the elastic energy Eelastic and the number of clusters c, each
normalized by the total number of lattice bonds:

Eelastic = −K
∂ f

∂K
(10)

b = w
∂ f

∂w
(11)

c = q
∂ f

∂q
. (12)

The derivatives of those densities, Eelastic, b, and c, with
respect to the model parameters provide in turn the fluctuations
(variances) of those quantities:

�E2
elastic = −K

∂ Eelastic

∂K
+ Eelastic (13)

�b2 = w
∂b

∂w
(14)

�c2 = q
∂c

∂q
. (15)

3. Renormalization group

The Migdal–Kadanoff recursion equations [23, 24] for d
dimensions are: Z ′

i, j = (Trk Zi,k Zk, j )
L , where L = 2d−1.

We assume each atom coordinate varies in the interval
(−1/2, 1/2), where the equilibrium lattice constant is 1. After
also using the Gaussian approximation (small elastic energy)
we get:

w′ = [1 + U(w, K , q)]L − 1 (16)

K ′w′ = K
L

2
[1 + U(w, K , q)]L−1U(w, K , q) (17)

where L = 2d−1 and

U(w, K , q) = w2 erf(
√

K/4)

q
√

K/π + √
8werf(

√
K/8)

. (18)

The recursion equations (16) and (17) represent the
Gaussian approximation of the exact solutions for hierarchical
lattices. Since this scheme is realizable, the convexity of the
free energy is preserved [25], and thus reasonable expectations,
such as positivity of energy fluctuations, are fulfilled. The
renormalization group flows are governed by the following
fixed points at K = 0 (pure Potts model): (i) w = 0 (non-
percolating live ‘springs’), (ii) w = ∞ (percolating network of
live ‘springs’), (iii) w = wc (Potts critical point). A stability
analysis at the Potts critical point, (K = 0, w = wc) yields
the two eigenvalues: (i) the thermal eigenvalue �1 (for the
direction along the K = 0 axis) is always larger than 1,
meaning the w −wc is a relevant field; ii. The other eigenvalue
�2 is associated with the flow along the w = wc line away
from the pure model (K = 0). For d = 2, �2 < 1 for all q .
This means that there is a line of points in the (w, K ) flowing
into, and thus is in the same universality class as, the pure Potts
critical point (wc, 0). For d = 3 on the other hand, �2 < 1
for q < 109, but �2 > 1 for q > 109. There exists another
fixed point at (w∗, K ∗) which has both eigenvalues larger than
unity for q < 109, and becomes stable in one direction for
q > 109. In figure 1 we show, for d = 3, the q dependence
of the thermal and elastic eigenvalues associated with the two
fixed points. Thus in d = 3, for large enough q , the elastic
constant K becomes a relevant field changing the universality
class of the model from the pure Potts criticality to a new one,
Potts elastic. However, in view of the Gaussian approximation
used to derive the recursion equations, we view this as only
an indication of a possible new universality class that warrants
further study.

The phase diagram, figure 2, for any given q , in the (w, K )

plane shows two phases: (I) solid with a percolating network
of live ‘springs’, (II) crumbling solid with mostly ‘failed’
springs. The two phases are separated by a critical line in the
universality class of the q-state Potts model (for d = 2 for all
q , for d = 3 for q < 109).

Note that when increasing the elastic constant K , one
needs a higher w to establish the solid phase. This is due to the
fact that increasing the elastic energy increases the probability
for the ‘spring’ to fail.

2
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Figure 1. Thermal and elastic eigenvalues in d = 3.
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Figure 2. Phase diagram for q = 10 and d = 2, in the plane (w, K ).

The free energy f = ln Z/NB , where NB is the number
of lattice edges, is:

f =
∞∑

n=1

Cn

(2L)n
(19)

where

C = ln

[
q + w

√
8π

K
erf

(√
K

8

)]L

(20)

and L = 2d−1. Using the free energy we can compute the
number of live ‘springs’ b, the number of clusters c, the elastic
energy Eelastic, and their fluctuations (variances). Each of those
quantities is scaled by the total number of lattice edges NB . In
figure 3 we show the elastic energy variation with K and w for
two different q values. As expected the elastic energy increases
monotonically with K and w starting at zero at K = 0 and at
w = 0.

The number of live ‘springs’ increases with w and
decreases with K , as shown in figure 4.

We also estimate the squared mean elongation (in units of
lattice constant a) of live ‘springs’ by using the number of live

springs, b, and the elastic energy:

�r 2 = 2

K

Eelastic

b
. (21)

The dependence of �r 2 on model parameters is shown
in figure 5. One can use the classical Lindemann model of
melting [26], �r 2 = 0.01, to estimate the melting temperature
of our model solid.

In the limit w = 0, the number of clusters is equal
to the number of sites. Hence c approaches the inverse of
the coordination number, which for the diamond hierarchical
lattice, corresponding to the Migdal–Kadanoff scheme for d =
2, is [16]: c = 2/3, consistent with figure 6.

In figure 7 we show the elastic energy fluctuations and the
number of live ‘springs’ fluctuations as functions of K and w,
for q = 10 and q = 1 respectively. Since the exponent α is
positive for q = 10 and negative for q = 1, a divergence is
apparent in the q = 10 critical point K = 2, w = 7.3.

The number of clusters c increases monotonically with the
conjugated fugacity q , starting at c = 0 at q = 0, as shown
in figure 8. The fluctuations in c exhibit a divergence at the
critical point q = 10, K = 2, w = 7.3 where the critical
exponent α is positive.

In figure 9 we show fluctuations in elastic energy, in
number of bonds, and number of clusters against w, K , and
q respectively, for d = 3 and q = 20. One can notice the
lack of symmetry in the divergence which is a characteristic
of 3d criticality [27, 28]. By contrast in 2d the divergences
are symmetric (see figure 7). This is related to the duality
transformation [20, 27]. The critical point exponent at q = 20,
w = 3.9, K = 2 is α = 0.015.

4. Monte Carlo simulations

In this section, we use for Monte Carlo simulation the
following Hamiltonian taken from equation (7)

H = −I1

∑

〈i, j〉
δ(σi , σ j ) + I2

2

∑

〈i, j〉
δ(σi , σ j )(ri − r j )

2 (22)

where I1 and I2 are renormalized parameters. Of course, one
has J1 = I1/kBT and J2 = I2/kBT .

In the case of two dimensions d = 2, we consider a
square lattice of size N × N where N = 40, 60, 80, 100.

3
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Figure 3. Elastic energy versus K and w. Left column: q = 10; right column: q = 1.

Figure 4. Number of live springs versus w and K , respectively. Left column q = 10; right column: q = 1.

Each lattice site is occupied by a q-state Potts spin. We
use periodic boundary conditions. Our purpose here is to
locate the phase transition point and establish the phase
diagram. To this end, a simple heat-bath Metropolis
algorithm is sufficient [29]. The determination of the
order of the phase transition and the calculation of the
critical exponents in the second-order phase transition region
need more sophisticated Monte Carlo methods such as
histogram techniques [30]. These are left for a future
study.

The simulation is carried out as follows. For each set
of (I1, I2), we equilibrate the system at a given temperature

T during 106 Monte Carlo sweeps (MCS) per spin before
averaging physical quantities over the next 106 MCS. In each
sweep, both the spin value and the spin position are updated
according to the Metropolis criterion. The calculated physical
quantities are the internal energy per spin E , the specific heat
Cv per spin, the Potts order parameter Q and the susceptibility
per spin χ . For a q-state Potts model, Q is defined as

Q = q max(Q1, Q2, . . . , Qq) − 1

q − 1
(23)

where Qi = ni
N 2 (i = 1, . . . , q), ni being the number of sites

having qi .

4
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Figure 5. Square of live ‘spring’ elongation versus w and K , respectively. Left column: q = 10; right column: q = 1.

Figure 6. Number of clusters versus w and K , respectively. Left column: q = 10; right column: q = 1.

Let us show first in figures 10 and 11 the energy, the
specific heat, the order parameter and the susceptibility in the
case where q = 2, I1 = 1 and I2 = 0.5.

These figures show a phase transition at Tc = 1.130 ±
0.005. Note that the size effects for N = 40, 60, 80 and
100 are not significant and are included in the error estimation.
Simulations have been carried out also for the following sets
(I1 = 1, I2 = 0.2), (I1 = 1, I2 = 0.8) and (I1 = 1, I2 = 1).

The results show that the transition temperature Tc does not
change significantly with this range of I2. Tc depends only on
the main I1 term.

To compare with the results from the renormalization
group calculation of the previous section, we have to use
J1 = I1/kBT , J2 = I2/kBT and equations (8) and (9) to
convert J1 and J2 into K and w. One has

w = exp(β I1) − 1 (24)

5



J. Phys.: Condens. Matter 20 (2008) 075222 M Kaufman and H T Diep

Figure 7. Fluctuations (variances) in elastic energy and number of live ‘springs’ versus K and w, respectively. Left column: q = 10;
right column: q = 1.

Figure 8. Number of clusters and their fluctuations (variances) versus q. Left column: w = 7.3, K = 2; right column: w = 1.857, K = 2.

K = I2

kBT

1

1 − exp(−β I1)
(25)

where β = 1/kBT .
Figure 12 shows the internal energy E as functions of w

and K for I1 = 1 and I2 = 0.5. The transition is found
at w∗ = 1.421 ± 0.002 and K ∗ = 0.753 ± 0.002. We
observe that only K ∗ varies with I2, not w∗ as expected from
equations (24) and (25). We have K ∗ = 0.301, 1.205 and
1.506 for I2 = 0.2, 0.8 and 1, respectively.

5. Conclusions

We have studied a model of a solid made of springs that
are live and harmonic or failed. The springs can fail with a
probability that increases with the energy. Our renormalization
group analysis suggests that elastic perturbations on the
Potts–percolation model are irrelevant for all q in two
dimensions, and for small enough q in three dimensions. The
renormalization group predictions must be viewed as only

6



J. Phys.: Condens. Matter 20 (2008) 075222 M Kaufman and H T Diep

Figure 9. Fluctuations of elastic energy, number of live ‘springs’, and number of clusters versus k, w, and q, respectively, for d = 3.

Figure 10. Energy per spin E (upper curve) and specific heat per
spin Cv (lower curve) versus temperature T for q = 2, I2 = 0.5 with
N = 60 and I1 = 1.

indicative, in view of the following known limitations. The
simple Migdal–Kadanoff renormalization group fails to predict
correctly the first-order transitions for d = 2, q > 4, and
for d = 3, q > 2. Furthermore our recursion equations
are valid for small elastic energy. Monte Carlo simulations
are needed to further our understanding of the model. Monte
Carlo results in d = 2 show that the phase transition does not
depend on I2 both on the value of the transition temperature
and on the transition order. This is physically in agreement

Figure 11. Order parameter Q (upper curve) and susceptibility χ
(lower curve) versus temperature T for q = 2, I2 = 0.5 with N = 60
and I1 = 1.

with the fact that in two dimensions the melting does not take
place at finite temperature. At least in d = 2, one can say
that the phase transition is solely due to the first term of the
Hamiltonian (22). We note in passing that in the Ising case,
the question of whether the elastic interaction affects or not
the Ising universality class has been investigated [31, 32]. No
definite conclusions have been reached [33, 34]. It would
be therefore interesting in the future to perform Monte Carlo
simulations for d = 3 and for large q to investigate the

7
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Figure 12. Internal energy E versus w (upper curve) and versus K
(lower curve) for q = 2, I2 = 0.5 with N = 60 and I1 = 1.

effect of elastic interaction on the criticality and on crossover
from second to first order. One can expand the percolation–
Potts model of a solid to study the equation of state via the
Gruneissen approach and fracture by considering ‘springs’ of
different elastic constant or threshold energy than the rest of
the lattice.
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